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Design of Digital Beamforming-based Automobile
Collision Avoidance System

Sundararajan Srinivasan

Abstract—This paper describes the design of an automobile
forward collision avoidance system based on digital beamforming
techniques. The advantages of using digital beamforming over
the existing system is stressed upon. In the proposed system,
an adaptive array of antennas is used in the receiver side to
form a pencil beam. The methodology of electronically controlling
the direction of the pencil beam is described. Various methods
of power spectrum estimation techniques are analyzed and
compared both theoretically and through simulation in order to
recommend the best approach for the proposed system. Linear
prediction-based tracking algorithms are compared and the most
accurate and efficient of them is identified. A DSP-based or
ASIC-based implementation of this system can perform the entire
collision avoidance functionality inside the host vehicle’s on board
computer.

Index Terms—Adaptive array, digital beamforming, power
spectrum estimation, linear prediction, Kalman filter

I. INTRODUCTION

DRIVER errors are responsible for most of the car acci-
dents. It has been identified that driver errors are a cause

or severity-increasing factor in 93% of the accidents[1]. Out
of these, nearly 28.4% of accidents are rear-end collisions[2].
Forward collision avoidance (FCA) system aims at avoiding
or mitigating frontal collision of vehicles, including rear-end
collision. There are two levels in which an FCA system can
operate. At the first level, in which driver can still act to avoid
accident, the FCA system alerts the driver either through a
sound alarm or through a vibrating accelerator pedal. In the
second level, the collision is avoided by a combination of
automated braking and steering. The determination of which
level, the FCA should resort to is based on a decision making
system that considers relative velocity and relative distance.

Currently most of the FCA systems in the market are
using global positioning system (GPS) to determine these two
parameters. In a GPS based FCA system, the host vehicle is
hooked with a GPS receiver that gets signal from GPS satellite.
By this mean, the absolute position of the car is determined.
Then the next task is to determine the nearest hurdle to the
forward traversal of the host vehicle in its current velocity.
Relative velocity and distance are deduced on the basis of
absolute velocities of the vehicles and absolute positions.
Although this system works well, it has some drawbacks.
During night time or when the sky is heavily overcast, the GPS
satellite may not be able to identify the hurdle or sometimes
even the host vehicle. This may result in the system going out
of order temporarily. In a worst case, the system may trigger
a false alarm. GPS based system may not work when the host

vehicle is not in an open environment, like parking lot or multi-
tier highway. Other than the technical limitations, the owner
of the host vehicle may be reluctant to install such a system,
since the absolute position of the car is always available to a
third party. It may be construed as an issue of privacy breach.

The solution for these problems is to build an FCA system in
which the entire logic of collision avoidance can be embedded
with in the host vehicle’s computer. This paper aims to provide
such a solution based on the digital beamforming technique.
The digital beamforming technique can be used to measure
both the relative velocity and position by suitably installing an
array of sensors in the frontal portion of the car with digital
signal processor hardware and software attached to it. Unlike
the GPS based system both these parameters are measured
directly reducing the complexity of the overall system. Once
these are determined, decision making is then based on the
probability density function for the relative position from the
host vehicle to the nearest obstacle. The entire logic can be
implemented in the host vehicle’s computer directly or through
an independent embedded system. Similar DSP algorithms
based on beamforming system are used in seeker missiles
where the motive is collision with the target, contrast to the
road collision avoidance system.

The basic definition and advantages of digital beamforming
and the architecture of the proposed collision avoidance system
based on digital beamforming is given in Section II. The
mathematical model and the design of the digital beamforming
receiver system is described in Section III. Various methods
of power spectrum estimation are analyzed in Section IV
and different linear prediction algorithms are compared in
Section V. Simulation results are presented in Section VI
with comparison of different performance metrics. The work
is summarized and conclusion is drawn in Section VII.

II. DIGITAL BEAMFORMING

Beamforming is the combination of microwave signals from
a set of small non-directional antennas to simulate a large
directional antenna. Such a simulated antenna can be pointed
to any direction with in a particular range electronically,
without physically moving that antenna. In direction finding
applications, beamforming can be used to steer an antenna to
determine the direction of the signal, which is called the angle
of arrival (AoA). The usage of an array of sensors instead of
a single omni-directional dipole antenna is inspired from the
way the eyes of cockroach works. Cockroach has multiple
eyes in a plane and as a result it can see multiple independent
image in distinct directions. Similar to that, an array of sensors
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can be used to generate a pencil beam constantly focused on
the positional parameters of the target.

Figure 1. Block diagram of the proposed architecture

Digital Beamforming (DBF) is based on conversion of RF
signal at each antenna elements into two streams of binary
baseband signals representing inphase and quadrature phase
channels. These two digital baseband signal can be used to
recover amplitude and phase of the signal received at each
element of the array. The process of digital beamforming im-
plies weighing the individual antenna in the array by complex
weight functions and then adding together to get the desired
output.

The block diagram of the proposed collision avoidance
system based on digital beamforming is shown in Figure 1.
It consists of the array of beamforming antenna that forms
the pencil beam in the microwave frequency in which the
RF section is defined. The AoA of the beam is controlled by
the adaptive weighting matrix. The weighted output is passed
to a spectrum estimator. The spectrum estimator extracts the
characteristics of the hurdle that includes its relative position
and velocity and feeds it as input to the alarming and braking
system of the host vehicle. These details also go to the tracking
filter, which predicts the subsequent position and velocity
of the hurdle. The output of the tracking filter goes as the
feedback loop to the adaptive weighting matrix.

III. DIGITAL BEAMFORMER RECEIVER

A. Mathematical model

The transmitter system of the FCA system based on DBF
can contain just a single transmitter antenna operating in
microwave frequency. The receiver on the other hand, set up
at the front portion of the car must be an array of sensors. An
array of sensors can be arranged in any pattern in the three
dimensional space. If a plane wave signal f (t, p) arriving at an
angle incidents on the array of sensors, the signal received by
each sensor is going to be the same except for some time delay
depending on the positioning of the sensors. The following
vector can be used to describe the signal arriving at each
sensor[3]:

f (t, p) =


fp0 (t)
fp1 (t)

...
fpN−1 (t)

 =


f (t− τ0)
f (t− τ1)

...
f (t− τN−1)

 (1)

where N is the number of elements in the array and τi
represents the time delay associated with the position of the
ith element of the array.

The design of the DBF receiver can be divided into four
main stages namely Antenna design and RF modulation stage,
digital down conversion stage, complex weight multiplication
stage, and summation stage. Out of these, the first stage i.e.
antenna design and RF modulation technically does not fall
into the digital beamformer. So that part has not been consid-
ered in detail for analysis in this paper. However, the design of
the antenna, RF reception, choice of the microwave frequency
and choice of modulation technique are also essential in the
implementation of a forward collision avoidance system.

The plane microwave frequency waveform that incidents on
the array of sensors is given by the general equation (assuming
the channel is completely noiseless):

f (t, pk) ≈ x (t) cos (Ω (t− τk)) , k = 0, . . . , N − 1

f (t, pk) = x (t) cos (Ωt− θk)

,where θk = Ω.τk, the phase change due to the time-delay
with respect to the position of the kth sensor, x (t) is the
transmitted RF wave with microwave frequency Ω. This RF
signal is modulated to an intermediate frequency (ω) and
passed through an ADC to obtain its digital representation
given by:

gk (n) = x (n) cos (ωn− θk) (2)

This digital signal is now passed into a digital down converter,
which splits this signal into its inphase component and quadra-
ture phase component. That can be achieved by multiplying
this signal with a digital sinusoidal signal to get the inphase
component and with a 90o phase-shifted version of the same
sinusoid to get the quadrature phase component. Usually the
digital local oscillator that generates this sinusoidal signal will
operate in the same frequency as the intermediate frequency
ω. The inphase and quadrature phase signals are represented
in the form[3]:

i′k (n) = gk (n) . cos (ωn)
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q′k (n) = gk (n) . sin (ωn)

Substituting the value of gk (n) from (2), in these equations,
we will get:

i′k (n) =
x (n)

2
(cos 2ωn+ cos θk)

q′k (n) =
x (n)

2
(sin 2ωn+ sin θk) (3)

The inphase and quadrature phase components are sums of a
high frequency signal at twice the intermediate frequency and
a low frequency signal at a frequency equal to phase of the
signal representing the time-delay. Our object of interest out
of these two is the low frequency signal carrying the phase
information. So as the last step of the down converter, we
subject the inphase and quadrature phase signals to a low pass
filter. The result obtained can be given as:

ik (n) = x (n) cos θk

qk (n) = x (n) sin θk (4)

The next stage of the DBF system is the scaling system. Here
the inphase and quadrature phase components derived in (4)
are multiplied by complex weights w∗k associated with each
antenna. To analyze this, let us consider the baseband signal
bk (n) represented as:

bk (n) = ik (n)− jqk (n)

Applying the values of ik (n) and qk (n) from (4),

bk (n) = x (n) (cos θk − j sin θk)

Applying Euler’s theorem,

bk (n) = x (n) .e−jθk (5)

It can be inferred from (5) that bk(n) is basically the trans-
mitted signal x(n) itself scaled by the complex constant
associated with the phase of the received signal. Evidently
if this signal is multiplied by the complex weighing factor
w∗k = ejθk , then the scaled value is given by:

yk (n) = w∗k.x (n) .e−jθk

= ejθk .x (n) .e−jθk

= x(n)

Thus we can conclude that by adjusting the value of the
complex weights w∗k, we can tune the digital beamforming
receiver in any desired direction or for signals with any AoA,
without physically gyrating the array itself. The last stage of
the DBF receiver sums up the processed signal from all the
sensors in the array and scales down the sum by a factor N
to recover x(n). One more observation that can be made out
of the above mathematical derivation is its verisimilitude with
the digital filter design. That is why the digital beamforming
technique is otherwise called spatial filtering. Just as in the
digital filter which selectively allows only a particular band
of frequency, the digital beamformer selectively allows only
signals from a particular direction. This can be observed from
the fact that for any other signal from a different AoA resulting

in some phase θ 6= θk, yk(n) won’t be equal to x(n) and so
that signal would be rejected. The analysis and simulations in
this paper focuses only on designing the system with single
main lobe in the angle θk. However mathematical equations
and techniques are available to extend the same analysis for
multiple main lobes pointing to different AoAs[4].

B. Receiver Design Considerations

The design and practical implementation of a digital beam-
forming receiver is based on the mathematical model derived
in the previous subsection, taking into account the physical
limitations of the real components. Before considering the
receiver design, the transmitter design is assumed to contain a
single multi-directional dipole antenna operating in microwave
frequency, transmitting the modulated form of the Barker
sequence. The first component of the DBF receiver is the
array of sensors and the RF section. As explained earlier,
the RF design is beyond the scope of this paper. For the
array of sensors to be operating with maximum efficiency, the
distance between adjacent array elements must be λ

2 , where
λ is the wavelength of the transmitted wave. The output of
this stage is the intermediate frequency signal. The digital
representation of this signal is obtained by passing this signal
through an ADC. The actual technique in which the A-to-D
conversion is achieved is irrelevant. But the bit resolution of
the ADC has to be high enough, as it is inversely proportional
to the quantization error. Since each antenna of the sensor is
connected to independent ADC, it is essential to use a single
clock in the circuit. The synchronization is important since the
weights are dynamically determined by the phase assuming
that it is purely due to the AoA.

Once the digital representation is obtained from ADC, the
rest of the logic can be implemented using a digital signal
processor or an ASIC system. The digital signals are fed into
a digital down converter logic. The digital down converter
splits the digital signal into its inphase and quadrature phase
component by multiplying it with phased sinusoids. The digital
sinusoidal signal oscillator can be obtained through direct
digital synthesis (DDS). The direct digital synthesis involves
generation of sinusoidal signal by means of look-up table
reference for amplitude values[5]. The generated signal must
be synchronous with the input signal in terms of frequency
and phase. Once the inphase and quadrature phase signals are
obtained, they have to be filtered to remove the IF component
and its harmonics. This can be obtained through a comb filter
operating at a stopband frequency twice that of ω and filter
gain of 2 to counter the division by 2 that happens during
down conversion as shown in (3).

IV. SPECTRAL ESTIMATION

A. Estimation Problem

When the DBF receiver is implemented, it can be tuned in
any direction by supplying appropriate weight functions. Until
the exact direction of the hurdle is determined, the weights are
adjusted periodically in such a way that the main lobe of the
beam sweeps across the frame of reference. The basic problem
considered in this section is the estimation of power density
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spectrum of the received signal from observing it over a finite
time interval. The length of the received data sequence is a
major limitation on the quality of the power spectrum estimate.
The length of the record is determined by the rapidity with
which the weights are changed in the receiver. An estimation
scheme has to be chosen that satisfies the goal of selecting as
short a data sequence as possible and still precisely deduce
the spectral characteristics of different signal components in
data sequence.

B. Non-parametric method for Estimation

Non-parametric method for the power spectrum estimation
are a class of algorithms that make no assumption about
the data sequence. These algorithms operate directly on the
periodogram of the signal given by:

Pxx (f) =
1
N

∣∣∣∣∣
N−1∑
n=0

x (n) e−j2πfn
∣∣∣∣∣
2

=
1
N
|X (f)|2 (6)

where x(n) is the sample sequence that comes out of the DBF
receiver and X(f) is its Fourier transform. Periodograms can
be used to detect and measure the “hidden periodicities” in
the data and thus determine the frequency[6]. The periodogram
can be computed by use of the DFT which in turn is efficiently
computed by a FFT algorithm. When only a few points of the
periodogram are needed, the Goertzel algorithm may provide a
very efficient computation. The periodogram is not a consistent
estimate of the true power density spectrum, because of the
problems due to leakage and frequency resolution[7]. Since the
estimated spectrum is completely based on the length of the
data sequence, the frequency resolution of these methods is the
equal to the spectral width of the rectangular window of length
N which is approximately at −3dB points. Improvement can
be made to the periodogram based power spectrum estimation
by applying different windowing techniques that are used in
FIR filters. The most common of them are Bartlett method,
Welch method and Blackmann method. Applying these win-
dows to the periodogram for spectral estimation increases the
computation complexity, but yields a better result.

The advantage of the non-parametric spectral estimation
method are their relative simplicity and ease of computation
using several FFT algorithms and windowing techniques. But
this method requires the availability of long data records in
order to obtain the necessary frequency resolution required
by a DBF receiver with 16 sensors that can be employed
in a Frontal Collision Avoidance system, especially when
different frequencies used in this application are relatively
closer. Furthermore the effectiveness of this method is affected
by spectral leakage effects due to windowing, that is inherent
in finite length records. Usage of different windows may
improve frequency resolution but only at the cost of increase
in leakage. The DBF receiver operates on the signal reflected
by the hurdle, which may be another moving vehicle or any
stationary object. Because of the characteristics of the object
and the additive white Gaussian noise, the reflected signal may
be weak. The spectral leakage masks weak signals that are
present in the data. The basic limitation of the non-parametric
method is the assumption that the power spectrum is periodic

with a period N . Parametric methods for Estimation overcome
these limitations by extrapolating the data beyond the observed
interval.

C. Parametric methods of Estimation

The parametric methods are considered suitable for applica-
tions like FCA system where short data records are available
and the channel is noisy. The parametric methods are based
on modeling the data sequence x(n) as the output of a linear
system characterized by a rational system function of the form

H (z) =
B (z)
A (z)

=
∑q
k=0 bkz

−k

1 +
∑p
k=1 akz

−k

The corresponding difference equation is

x (n) = −
p∑
k=1

akx (n− k) +
q∑

k=0

bkw (n− k)

where w(n) is the input sequence and x(n) is the output
sequence. If the same equation is extended for power density
spectrum as

Γxx (f) = |H(f)|2 Γww(f)

This model is called an autoregressive-moving average
(ARME) process of order (p,q). In this process, if the value of
q is zero, then x(n) is called an autoregressive (AR) process of
order p. The AR model is by far most widely used in spectrum
estimation. The reasons are an increased frequency resolution
and very simple linear equation for AR parameters. One of
the parametric method for AR model is Yule-Walker method.
In the Yule-Walker method, the autocorrelation function is
estimated from the data sequence to solve the AR model
parameters. In this method, it is desirable to use the biased
form of autocorrelation estimate[7],

rxx(m) =
1
N

N−m−1∑
n=0

x∗(n).x(n+m)

to ensure that the autocorrelation matrix is positive semidef-
inite which results in a stable AR model. Applying the
Levinson-Durbin algorithm[8], [9], the power spectrum esti-
mate is given by

PYWxx (f) =
σ̂2
wp

|1 +
∑p
k=1 âp(k)e−j2πfk|2

(7)

where âp(k) are estimates of the AR process obtained from
Levinson-Durbin algorithm and

σ̂2
wp = rxx(0)

p∏
k=1

[
1− |âk(k)|2

]
is pth order predictor estimate for minimum mean-square error
(MMSE).

Yule-Walker method is computationally very efficient and
yields a stable AR model. The efficiency of the entire al-
gorithm depends on the implementation of Levinson-Durbin
algorithm. In a single processor sequential system, the effi-
ciency is O(n2). On the other hand, if the processing is per-
formed on a parallel processing system, many of the mutually
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independent multiplications and additions can be carried out
concurrently. If the number of parallel cores is equal to the
number of poles in the AR model, the efficiency improves
to O(n log n). In practical scenario, when the input signal
is contaminated with additive white Gaussian noise then an
extended Levinson-Durbin algorithm can be implemented[10].
With the advent of multi-core digital signal processors and
application specific integrated circuits (ASIC), Yule-Walker
algorithm can be performed efficiently to determine the power
density spectrum. However the frequency resolution of Yule-
Walker method deteriorates severely with lesser number of AR
poles, even at very good signal-to-noise ratio (SNR).

For DBF system operating in frequencies very close to
each other, either the number of poles has to be increased
or unconstrained least-squares method of AR model has to be
used. In this method, the constraint arising from Levinson-
Durbin is not imposed for deriving the AR parameters. The
unconstrained minimization of error εp with respect to the
prediction coefficients yields the set of linear equations

p∑
k=1

ap(k).rxx(l, k) = −rxx(l, 0) l = 1, 2, . . . , p

where the autocorrelation function rxx(l, k) is

rxx(l, k) =
N−1∑
n=p

[x(n− k).x∗(n− l) + x(n− p+ l).x∗(n− p+ k)]

The resulting residual least square error is

εLSp = rxx(0, 0) +
p∑
k=1

âp(k)rxx(0, k)

Hence the unconstrained least-squares power spectrum esti-
mate is given by[11]:

PLSxx (f) =
εLSp

|1 +
∑p
k=1 âp(k)e−j2πfk|2

(8)

The unconstrained least-squares method gives excellent fre-
quency resolution and very good performance even in low
SNR compared to other methods. The correlation matrix is
not toeplitz and so Levinson-Durbin algorithm cannot be
applied in this method. Instead of that, Marple’s algorithm
can be applied with computational complexity proportional to
O(n2)[12]. Although not as efficient as Yule-Walker method,
the trade-off is well justified in terms of its performance.
With the unconstrained least-squares method, there is no
guarantee that the estimated AR parameters would yield a
stable AR model. But in spectral estimation, since we would
not be applying the constant filter for a long time, this is not
considered as a problem.

One of the important aspect of using the AR model is
the selection of the order p. If the order is too low, highly
smoothed spectrum is obtained. Such a model would not yield
a good frequency resolution, especially in low SNR conditions.
A low order AR model can be used in a closed, noise-
free environment with operating frequencies are not aligned
closer. In an FCA system, the array of sensors that is fitted
on the frontal side of the vehicle, operates on the basis of

the signal reflected by the hurdles on the road. The reflected
signal is usually weak and high SNR cannot be expected.
On the other hand, if the order of the AR model is too
high, it introduces spurious peaks in the spectrum. One of the
information criterion to select the value of p is based on the
order that minimizes the description length (MDL)[13], where
MDL is defined as

MDL(p) = N ln σ̂2
wp + p lnN

An alternative criterion is called criterion autoregressive trans-
fer (CAT) function[14] and is defined as

CAT (p) =

(
1
N

p∑
k=1

1
σ2
wk

)
− 1
σ̂2
wp

where
σ2
wk =

N

N − k
σ̂2
wk

The order p is selected to minimize CAT (p). Despite having
these criteria, it is apparent that in the absence of any prior
information regarding the physical process, different model
orders must be tried and the results must be used to determine
the optimum order.

D. Eigen Analysis Algorithms for Estimation

An AR model explained in the previous section can act
as a ARMA model in the presence of additive white noise.
For such a noise-corrupted signals, eigen decomposition of
the correlation matrix can be used to determine the frequency
components. The underlying assumption for eigen-based esti-
mation is that the signal is corrupted by noise, which is usually
the case in a frontal collision avoidance system.

The multiple signal classification (MUSIC) is one of
the noise subspace frequency estimator that considers the
“weighted” spectral estimate[15], [16]. The MUSIC sinusoidal
frequency estimator is a special case in which the weights are
unity. The power density spectrum of MUSIC is given as

PMUSIC(f) =

 M∑
k=p+1

∣∣sH(f)vk
∣∣2−1

(9)

where M is the number of autocorrelation lags,
{vk, k = p+ 1, . . . ,M} are the eigen vectors in the
noise subspace, p is the estimated number of sinusoids in the
received signal, and s(f) is the complex sinusoidal vector
given by

s(f) = [1, ej2πf , ej4πf , . . . , ej2π(M−1)f ]

The estimates of the sinusoidal frequencies are the peaks of
PMUSIC(f). Once the sinusoidal frequencies are estimated,
the power of each of the sinusoid can be calculated.

The MUSIC algorithm also provides the number of sinu-
soid components in the signal. Suppose there are p sinu-
soids, the eigen values associated with the signal subspace
are

{
λi + σ2

w, i = 1, 2, . . . , p
}

while the remaining (M − p)
eigen values are all equal to σ2

w that is the noise variance. If the
eigen values of the sample autocorrelation matrix are ranked
so that λ1 ≥ λ2 ≥ · · · ≥ λp, where M > p, the number of
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sinusoids in the signal subspace is estimated by evaluating the
minimum value of MDL(p), given as[17]

MDL(p) = − log
[
G(p)
A(p)

]N
+ E(p)

where

G(p) =
M∏

i=p+1

λi

A(p) =

 1
M − p

M∑
i=p+1

λi

M−p

E(p) =
1
2
p (2M − p) logN

Computationally, MUSIC is costlier compared to nonpara-
metric and parametric methods. But MUSIC exhibits excellent
signal estimation performance even in very low SNR. Also the
frequency resolution of MUSIC is far superior to the other
methods. In MUSIC algorithm, the number of sinusoids in
the received signal is estimated. In case of the FCA system,
since the transmission is controlled by the system itself, the
number of sinusoids in the reflected signal is precisely known.
So this alleviates the problem of spurious peaks in high-order
AR system.

E. Choice of the estimation algorithm

In case of a frontal collision avoidance system on the
basis of digital beamforming, the system operates in an open
environment. The channel is subject to huge noise, due to
several factors that include the characteristic features of the
object in front of the host vehicle, other communication
devices and thermal noise of the nearby components. Since
the channel quality is low, the nonparametric methods cannot
be considered for our system. Other than the channel quality,
non-parametric method expects a greater length of the data
sequence to predict the sinusoids precisely. This implies that
more time has to be spent at each AoA, which reduces the
sweep speed and ability to identify the hurdle faster. This
is clearly not acceptable, especially when the host vehicle is
traveling at a high velocity.

On the other hand, the parametric methods show excellent
performance even when the SNR is low. Parametric methods
are not affected by spectral leakage, unlike non-parametric
methods. But in parametric methods, care has to be taken to
determine the order of the AR model, since non-optimal order
can result in false alarm. Parametric methods are computa-
tionally costlier than nonparametric methods, which is based
on computation of DFT on the basis of Goerzal algorithm.
Out of the parametric methods, the frequency resolution of
Yule-Walker method is poorer than even some windowed
non-parametric methods. Yule-Walker method is preferable in
our FCA system, if the multiple operating frequencies are
sufficiently spaced, because of the computational efficiency of
this method using Levinson-Durbin algorithm. Unconstrained
least-squares method performs better than Yule-Walker method
in low SNR and it does not have any frequency resolution

problem, since it is not constrained by the toeplitz criterion.
But this method is highly vulnerable to spurious peaks if
the order is not chosen carefully. Also since Levinson-Durbin
algorithm cannot be applied, it is computationally costlier.

For a generic digital beamforming system that is used in
RADAR and seeker missiles, MUSIC algorithm is considered
the best in identifying the reflected signal frequencies. It can
work well even in a negative SNR and shows high frequency
resolution. Unlike parametric methods, it is immune from
problems due to spurious peaks. In an FCA system, since the
transmitter is also a part of the system, we can accurately
determine the number of sinusoids in the received signal. The
only problem with the MUSIC algorithm is the requirement to
calculate the eigen values and eigen vectors, which may prove
computationally costlier. Besides, under high SNR which may
occur when the host vehicle travels at a slow velocity in a
remote garage, the peaks of the MUSIC algorithm may cause
register overflow in the digital signal processor. This is not the
problem of the algorithm and this is because of the limited
number of bits with which the processor operates. So setting
of the overflow flag has to verified in the logic that goes into
the signal processor.

So the choice of the algorithm between parametric methods
and MUSIC is really determined by the computational capacity
of the FCA system. If a quad-core digital signal processor or
an ASIC system is used as in the case of a seeker missile,
MUSIC algorithm can be implemented. But if a single-core
processor or an FPGA based system is used, then one of
the parametric methods has to be resorted to, with a careful
choice of the order of AR model and a compromise to be done
on frequency spacing. The choice of the exact algorithm can
be postponed until the simulated comparative results of these
methods are discussed in VI-B on page 9.

V. PREDICTION AND TRACKING

A. Role of Prediction

In a forward collision avoidance system based on digital
beamforming, the DBF receiver takes care of tuning the main
lobe in a desired direction. At the beginning, the weights
are adjusted in such a way that the beam is sweep in all
directions in an attempt to gather the reflected signal wavefront
in each direction. The angle in which the hurdle is located is
determined by the power spectrum estimation methodologies
described in the previous section. Once the AoA is determined,
the relative position of the hurdle in a two dimensional plane
is determined by the angle itself and the time taken for the
microwave to hit the hurdle and gets reflected back to reach
the receiver. The velocity of the vehicle is usually determined
by the Doppler effect on frequency of the reflected wave,
which can be obtained from the power spectrum estimation. If
required, multiple main lobes can be formed to track multiple
hurdles in a time sharing system. Once the relative position
and relative velocity of the hurdle with respect to the host
vehicle is determined, some prediction algorithms have to be
applied to determine the course of the hurdle. The prediction
algorithm chosen plays a major role in avoiding collision,
especially when the hurdle detected is also a moving vehicle.
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This helps us determine whether the vehicle in front is going to
brake or swerve to left or right to change change lane or move
ahead faster and trigger our alarming system accordingly. A
forward collision avoidance system with prediction algorithm
implemented is always more robust that the one without. Also
with prediction algorithm incorporated the FCA system can
be easily converted to a full-pledged adaptive cruise control
system.

In an FCA system, the signal can be modeled as a sum
of multiple sinusoid with additive white Gaussian noise. The
adaptive filter that has to be designed for prediction has
to suppress the undesired interference while preserving the
characteristics of the original signal. The adaptive filter is
constrained to be linear with an impulse response h(n), de-
signed in such a way that the output of that filter approximates
some desired signal sequence d(n). The input sequence to
the filter is x(n) = s(n) + w(n), where s(n) is the actual
signal which represents a sum of sinusoids and w(n) is the
additive noise. If this x(n) goes through an optimum linear
filter with characteristics h(n), it produces y(n) which is
the approximation of the desired signal d(n). The error in
the approximation is given by e(n) = d(n) − y(n). In this
estimator system, if d(n) = s(n + D), where D > 0, the
linear estimation problem is referred to as signal prediction.
The criterion selected for optimizing the filter response h(n)
is the minimization of mean-square error (MMSE).

B. Wiener Filter

The optimum linear filter in the sense of MMSE is called
a Wiener filter. Suppose an FIR filter is constrained to an
order M with coefficients {hk, 0 ≤ k ≤M − 1}[18]. Hence
the output y(n) depends on the finite data record x(n), x(n−
1), . . . , x(n−M + 1),

y(n) =
M−1∑
k=0

h(k).x(n− k)

The mean square error between the desired output d(n) and
y(n) is given by

εM = E |e(n)|2 = E

∣∣∣∣∣d(n)−
M−1∑
k=0

h(k).x(n− k)

∣∣∣∣∣
2

(10)

This equation (10) can be expanded as

εM = E[d(n)2]− 2E

[
d(n).

M−1∑
k=0

h(k).x(n− k)

]

+E

(M−1∑
k=0

h(k).x(n− k)

)2


This can be re-expressed as

εM = σ2
D−2

M−1∑
k=0.

h(k)γdx(k)+
M−1∑
k=0

M−1∑
m=0

h(k)h(m)γxx(m−k)

This is a quadratic function of the filter coefficients, the
minimization of εM yields the set of linear equations

M−1∑
k=0

h(k)γxx(m− k) = γdx(m)

This linear equation that specify the optimum filter
is called Wiener-Hopf equation. The optimum value of
{h(k), k = 0, 1, . . . ,M − 1} is given in matrix form by

hopt = Γ−1
M γd (11)

and the resulting MMSE is given by

MMSEM = σ2
d − γ∗td Γ−1

M γd (12)

The autocorrelation matrix to be inverted is toeplitz. The in-
version can be done using Levinson-Durbin algorithm may be
used to solve for the optimum filter coefficients. Alternatively
the solution can also be obtained by means of Singular Value
Decomposition (SVD) method[19], [20].

C. Discrete Kalman Filter

The Kalman filter[21], [22], [23] is a recursive solution
to the discrete-data linear filtering problem. It addresses the
general problem of trying to estimate the state x ∈ <n of a
discrete-time controlled process that is governed by the linear
stochastic difference equation:

x(k) = Ax(k − 1) +Bu(k − 1) + w(k − 1) (13)

with a measurement of z ∈ <m that is

z(k) = Hx(k) + v(k) (14)

In these equations, the random variables w(k) and v(k)
represent the additive white process noise and measurement
noise respectively. They are mutually exclusive functions with
normal probability distribution given by

p(w) ∼ N(0, Q),

p(v) ∼ N(0, R)

In practice the noise covariances Q and R might change with
each measurement. For the a priori state estimate, x̂∼k at each
step k which is based on the process prior to the step k, the
estimated error is given by

e∼k = xk − x̂∼k
The a priori estimate error covariance is given by

P∼k = E
[
e∼k e

∼T
k

]
Once the value of xk is predicted by the predictor equation
of the Kalman filter, an a posteriori estimate is made in an
attempt to minimize the prediction error. This a posteriori state
estimate is used to determine the next step. The a posteriori
state estimate x̂k is expressed as a linear combination of the
x̂∼k and a weighted difference between the actual measurement
zk and a measurement prediction. It is given by

x̂k = x̂∼k +K (zk −Hx̂∼k ) (15)
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In Kalman filter terminology, the equation (13) is called
predictor equation and (15) is called the corrector equation
of the Kalman filter. The difference (zk −Hx̂∼k ) is called the
measurement innovation of the Kalman filter and the matrix
K is called the Kalman gain or blending factor that minimizes
the a posteriori error covariance, which is given by

K =
P∼k H

T

HP∼k H
T +R

(16)

Thus the Kalman filter during its operation first makes the a
priori estimate on the basis of the predictor equation. Then
the calculated a priori estimate is corrected by computing the
Kalman gain, K. The final step is to obtain an a posteriori
error covariance. At each time and measurement update pair,
the process is repeated with previous a posteriori estimates
used to project or predict the new a priori estimates.

The most appealing nature of the Kalman filter is this
recursive nature. It makes the practical implementation much
more feasible that the Wiener filter which is designed to
operate on all data directly for each estimate. The Kalman
filter instead recursively conditions the current estimate on all
of the past measurements. Kalman filter not only predicts the
next step, but also corrects the earlier prediction by taking the
measurement error into consideration. In contrast the Wiener
filter does not work on feedback mechanism. As a result the
learning curve of the Kalman filter is steeper than that of the
Wiener filter.

In the actual implementation of the Kalman filter in a
DBF based FCA system, the measurement noise covariance
R is usually measured prior to the operation of the filter.
The determination of the process noise covariance Q is more
difficult, since the operating environment of the FCA system
is highly varying. Often the Kalman filter’s performance
becomes superior by tuning the filter parameters Q and R
to a more realistic value. This can be performed off-line
during system identification, by analyzing the most probable
operating environment of the FCA system.

During the analysis of the operating environment, if the
relation between the process and measurement coefficients
are found to be non-linear then the Kalman filter may not
be able to predict with high accuracy. In such situations, an
extended Kalman filter (EKF) has to be resorted to[24]. EKF
is a modified Kalman filter which linearizes the current mean
and covariance. The complete equations of an EKF can be
given only on the basis of the exact non-linear relation that
exists in the environment. But the basic operation of the EKF
is in the same predictor-corrector form of a linear discrete
Kalman filter.

VI. SIMULATION

A. Beam pattern of DBF receiver

Theoretically, an array of sensor can be arranged in any
pattern in a three dimensional space. The equation (1) gives
the function of signal at each element of the array. The signal
f (t, p) generated in space can be considered a far-field wave,
since the distance between the adjacent elements is negligibly

low compared to the distance between the host car and the
nearest hurdle. For a far-field wave, (1) can be rewritten as:

f (t, p) =


f (t) ej(Ωt−kT p0)

f (t) ej(Ωt−kT p1)
...

f (t) ej(Ωt−kT pN−1)


where k is called wave number and Ω is the angular frequency
of the operating microwave. The wavenumber k is the trans-
formation parameter to convert Cartesian coordinates in which
the array of sensors is represented to polar coordinates and
p represents the position in cartisian coordinates. They are
represented as follows:

k(θ, φ) =
2π
λ

 sin θ cosφ
sin θ sinφ

cos θ

 , p =

 px
py
pz

 (17)

, where λ is the operational wavelength, θ is the planer angle
and φ is the azimuth angle. To get the frequency characteristics
of the received signal, we have to take Fourier transform to
f (t, p) which is:

F (Ω, p) =
∫
f (t, p) e−jΩtdt

Expanding the matrix,

F (Ω, p) =


∫
f (t) ej(Ωt−kT p0)e−jΩtdt∫
f (t) ej(Ωt−kT p1)e−jΩtdt

...∫
f (t) ej(Ωt−kT pN−1)e−jΩtdt



F (Ω, p) = F (Ω)


e−jk

T p0

e−jk
T p1

...
e−jk

T pN−1

 = F (Ω) v (k)

To determine the beam pattern of the receiver, we have to sum
the array manifold vector v(k) for each array element, scaled
by the weights. Thus the beam pattern of the receiver antenna
is given by the equation:

B (k) =
N−1∑
l=0

w∗l vl (k)

For a narrowband beamformer that can be used for our purpose
to form a pencil beam, the weighting function is given by:

w∗n =
1
N
ejk

T (θ,φ)pn

The equations of beam pattern and weight functions are
applicable only for a generalized planer array where both the
planer angle θ and azimuth angle φ are significant. But when
we consider a linear array of sensors, which is commonly
used in applications where there is no vertical movements to
be tracked, the value of azimuth angle φ becomes zero. For
constructing a frontal collision avoidance system, a linear array
of sensors would suffice since the vertical movement of the
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host vehicle relative to the hurdle is fairly insignificant. If we
apply the generalized equation (17) for a linear array, px and
py would becomes zero and only pz is significant. Under this
assumption, the weight function becomes:

w∗n =
1
N
ej(

2π
λ )pz cos θ

For simulation purpose, let us assume that the DBF receiver
has a linear array with 4 antennas with an inter-element
spacing between individual antennas in the array must be λ

2 for
optimum performance. For an AoA of 60o, the beam pattern
can be plotted in a polar graph as in Figure 2. In Figure 3, the
beam pattern is plotted with 16 element linear array instead of
4 elements. From these figures, it can be noticed that the beam
width of the main lobe is lower as the number of antennas in
the linear array increases.

Figure 2. Beam pattern of linear array with 4 antennas for AoA of 60o

Figure 3. Beam pattern of linear array with 16 antennas for AoA of 60o

B. Comparison of Estimation Algorithms

In this subsection, several spectral estimation algorithms are
compared on the basis of their frequency resolution, bias, their

robustness in the presence of additive white Gaussian noise.
As already mentioned in IV-E on page 6, the performance of
periodogram based methods would be subpar to be considered
for implementation of a forward collision avoidance system.
So the non-parametric methods are not considered for simula-
tion. Both the parametric methods and MUSIC algorithm are
considered for simulation and comparison.

The data model for this simulation consists of two sinusoids
and additive white Gaussian noise. The two sinusoids are
spaced ∆f apart in the digital frequency domain ranging
between − 1

2 and 1
2 . The input data is represented in the form

x(n) = cos 2πfn+ cos 2π(f + ∆f)n+ w(n)

Figure 4. Comparison of AR spectrum estimation methods. AR(6), 20 pts,
SNR = 20dB, ∆f = 0.13

The initial comparison is between Yule-Walker method and
the unconstrained least-squares method for N = 20 data points
based on AR model of order 6, with an SNR = 20 dB and ∆f
= 0.13. It is illustrated in figure 4. It can be noted that both
Yule-Walker method as well as least squares method yield a
very good result. But at the same time, when the order of
the AR model is reduced to 4, Yule-Walker method yields an
extremely smooth spectral estimate with small peaks, which
is illustrated in figure 5. This proves that by choosing the
order properly and increasing the number of data points, Yule-
Walker can be made to yield as good a result as least squares
method. However, least squares method is clearly superior for
short data lengths. Also when the value of ∆f is reduced to
0.09 with AR(4), Yule-Walker method no longer identify the
two frequency points distinctly, as illustrated in figure 6. On
the other hand, even though least squares method smoothened
as the value of ∆f is reduced, it can still distinguish the two
frequencies. This proves that least squares algorithm has a
higher frequency resolution than Yule-Walker method.

Figure 7 illustrates the occurrence of spurious peaks in least
squares algorithm in case of a higher order of AR model. For
this illustration, the order chosen was 12. It can be noticed
that least-squares is more vulnerable to these spurious peaks
(4 peaks for 2 distinct frequencies) due to higher order than
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Figure 5. Comparison of AR spectrum estimation methods. AR(4), 20 pts,
SNR = 20 dB, ∆f = 0.13

Figure 6. Comparison of AR spectrum estimation methods. AR(4), 20 pts,
SNR = 20 dB, ∆f = 0.09

the Yule-Walker method. These spurious peaks may result in
false alarm in an FCA system and so completely undesirable.
Thus even though the performance of the least squares method
is superior to that of Yule-Walker method, unless the value of
the order of AR model is chosen carefully, it would not serve
our purpose in FCA. The theoretical guideline for choosing
the order is to minimize the MDL function or CAT function.
The simulation results suggest the value of the order of AR
model to be chosen around N

3 , for optimum performance of
both the parametric methods.

Since it has been illustrated that the least squares method
shows best performance among the parametric methods, it
can be compared with MUSIC algorithm to determine which
one is better. Theoretically, MUSIC algorithm shows excellent
performance in a noisy environment as its power density
spectrum directly depends on the noise-space eigen vectors.
Also MUSIC algorithm does not have the concept of spurious
peaks. Figure 8 illustrates the performance of least squares
method of AR(6) and MUSIC algorithm at an SNR of 10
dB. Both the algorithms perform equally well at a 10 dB

Figure 7. Comparison of AR spectrum estimation methods. AR(12), 20 pts,
SNR = 20 dB, ∆f = 0.13

SNR. So when the SNR of the FCA system is measured
to be in the range of 10 dB, then it is a good idea to
choose the least squares method, since it can be efficiently
implemented using Marple’s algorithm. The implementation of
MUSIC algorithm is computationally costly since it involves
eigen vectors calculation.

Figure 8. Comparison of least squares methods and MUSIC algorithm.
AR(6), 20 pts, SNR = 10 dB, ∆f = 0.13

Whenever the expected SNR is positive, least squares
method can be chosen over MUSIC algorithm. When SNR
becomes negative, the performance of MUSIC algorithm is
much superior to that of least squares method. This is illus-
trated in Figure 9, which compares the power density spectrum
of least squares method and MUSIC algorithm at -20 dB
SNR, which signifies a noise that is 100 times more powerful
than the signal. Because of this superior performance, MUSIC
algorithm is preferred in military environment, as it can detect
the signal even in the presence of high power jammer signals.
A forward collision avoidance (FCA) system in front of a car
may not require such a sophisticated algorithm at the expense
of computation cost, since that much amount of additive noise
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Figure 9. Comparison of least squares methods and MUSIC algorithm.
AR(6), 20 pts, SNR = -20 dB, ∆f = 0.13

need not have to expected in a domestic environment. So
through these simulations, it can concluded that unconstrained
least squares method with a carefully chosen order of the AR
model and frequency gap is the most optimal implementation
for the FCA system.

C. Comparison of Linear Prediction Algorithms

The two prediction algorithms that have been taken into
account for tracking of the hurdle in an FCA system are
Wiener filter and Kalman filter. The two different values that
needs to be predicted in this system are the relative distance
and relative velocity at the next instance with the values at the
current instance and previous instances. The mean square error
in prediction is the mean square difference between actual
values measured at that instance and the predicted values at
the previous instance.

The data model for this calculations is expressed as follows:

s =
[
d
v

]
=
[
d

ḋ

]
(18)

where ḋ is the differential of distance which is the velocity
v. In a three dimensional space, distance and velocity are
represented in the form in Cartesian coordinates (x, y, z).
In an actual scenario of host vehicle traveling on a road,
the relative vertical movement of the hurdle with respect to
the host vehicle is negligible and irrelevant. This is the same
reason why a linear array can be used in the FCA system and a
planer array may not be required. Assume z-axis to represent
the vertical direction which can be neglected. Thus the data
model in (18) is deduced in Cartesian and polar coordinates
as

s =


x
y
ẋ
ẏ

 ≡

r
θ
ṙ

θ̇

 (19)

Since the main lobe of the beam pattern is represented in radial
form, the same pattern could be followed here. The results of

the predictive filters however are independent of which form
is used.

For simulation, assume the relative distance between the
host vehicle and the target vehicle is 30 meters at an angle of
60o, which is moving from right lane to the lane in which the
host vehicle is operating. The host vehicle is assumed to be
traveling at 40 meters-per-second (mps) and the target vehicle
at 50 mps. So the relative velocity of the target vehicle is +10
mps. The relative direction component of the target vehicle
can be assumed as 3o per second, i.e. the target vehicle is
moving into the driving lane of the host vehicle at a rate of
3o per second. Applying these values in the equation (19),

s =


30
60
10
3


The target vehicle is slowing down at a random rate, in such
a way that the relative distance and relative velocity between
the target vehicle and the host vehicle is reducing, while the
relative direction is getting aligning to 90o. This is a typical
scenario in which the main lobe of the beam has to turn in such
a way that the target vehicle is tracked without missing. The
process noise power and measurement noise power are each
assumed to be σ2

w = 4, both in distance and velocity fronts.
Apart from these there is also a slight degree of randomness
involved in the distance and velocity front. Thus the changing
relative distance and velocity can be given as

sl =


30− lσ

60 + 0.2lσ2

10− 2lσ2

3 + 0.05lσ2

 l = 1, 2, . . . , L

, where σ2 represents the randomness with unit variance
(scaling is done in the equation) involved in the manual driving
operation and L is the total number of iterations for which the
tracking is done. In this described scenario, the performance
of corrected value of Kalman filter and estimated value of
Wiener filter are compared in Figure 10.

Figure 10. Comparison of Wiener filter and Kalman filter
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It is evident from the comparison that the performance of
Kalman filter is superior to the Wiener filter in the assumed
scenario. The mean square error of the Kalman filter is
nearly ten times lower than that of Wiener filter. The superior
performance of the Kalman filter can be attributed to several
factors including predictor-corrector system, consideration of
measurement error also in the prediction and continuous
learning nature. The prediction error of the Kalman filter alone
may be greater than that of Wiener filter, but the corrector
part of the Kalman filter moves the value closer to the actual.
From the implementation point of view, Kalman filter is more
efficient because the Kalman equations are iterative in nature.

The learning mechanism of the Kalman filter can be sim-
ulated when we consider a situation, where the target vehicle
hard-brakes suddenly resulting in a rapid reduction is relative
distance and relative velocity. Consider that the host vehicle
and target vehicle are initially in conditions described above
for the first five measurements. Then the target vehicle hard
brakes resulting in its relative velocity reducing to −20 mps
with respect to the host vehicle. The randomness associated
with the velocity of the target vehicle can be considered
to increase by 4 times during hard braking and reduces
down constantly. This sudden deceleration continues from fifth
measurement to twentieth measurement and afterwards the
vehicle starts moving in the uniform velocity and acceleration.
The working of Kalman filter is simulated and results are
shown in Figure 11.

Figure 11. Performance of Kalman filter during hard braking of target vehicle

It can be observed that the mean-square error shoots up
at the sixth measurement and slowly reduces down. At the
twentieth measurement, the system stabilizes as the braking
stops. This curve of reducing mean-square error is partly
attributed to the learning nature of the Kalman filter and
partly to the assumed constant reduction in randomness. The
reduction in randomness during the period of hard brake of
the target vehicle is a very practical assumption, as the driver
of the host vehicle becomes alert about the braking as the
time goes. Thus Kalman filter suits better as the prediction
algorithm for the FCA system.

In practice, the performance of the predictor can be in-

creased and its learning curve can be steepened drastically by
introducing non-linearity through an extended Kalman filter
(EKF)[24]. Most of the GPS systems for tracking the delivery
trucks are known to be using EKF for prediction. The same
non-linear equation can be used in the EKF of the DBF based
FCA system. Also as said earlier, the introduction of EKF can
improve the chance of converting the FCA system into a full-
pledged adaptive cruise control system, since it would also
require the same kind of prediction and velocity variations.

VII. SUMMARY

This paper focused on designing a new architecture for
vehicle safety that avoids forward collision by using the digital
beamforming technique. The vitality of digital beamforming
relies in the accuracy with which the highly directed array
of sensors can operate in detecting and tracking the possi-
ble hurdle. When compared with the prevailing GPS based
systems, its greatest advantage is its simplicity, applicability
and ability to indigenously perform all calculations with in the
vehicle’s computer. During the analysis and simulation of DBF
receiver to form directed beam in the desired angle, spectrum
estimation algorithms to identify the direction of the hurdle
and its other characteristics, and linear prediction algorithms
for tracking, a lot of different approaches are compared for
their performance and efficiency and a few recommendations
are made. Those recommendations are summarized here.

For the DBF receiver design, more the number of array
elements, more directed is the main lobe. The increase in
the number of array elements also reduces the strength of
sidelobes. A linear array of 16 elements can form a highly
directed mainlobe to cater our need. Planer array may not
be required, since the vertical movement of the vehicles on
the road are unimportant and negligible. Barker sequence can
be used for transmission. Direct digital synthesis can be used
for generated signal at intermediate frequency. DDS can be
implemented by using commercial DDS synthesizers, since its
FPGA implementation is found to take up a lot of memory.
The main assumption made in this design is that the signals
are coming from far-field, which is reasonable. For signal
estimation, eigen-based algorithm are the best in terms of
noise performance and frequency resolution. But they are
computationally expensive. So parametric methods are suited
for the FCA system. The simulation results reveal that out
of the parametric methods, unconstrained least-square method
has a better frequency resolution and noise performance. The
underlying assumption for suggesting parametric methods is
that the received signal has positive SNR. This assumption
is also valid in a non-military environment. In reality, uncon-
strained least-squares method can be used along with non-
parametric windowing systems like Blackman-Tukey, there by
making it an ARMA system. The choice of the windowing
system itself is beyond the scope of this paper and it requires
a better understanding of the actual operating environment.
Out of the two linear prediction algorithms considered in
this paper, Kalman filter is found to be performing better
than Wiener filter in terms of computational efficiency and
prediction accuracy. The measurement noise covariance of the
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system can be identified only after the entire system is im-
plemented. More accurate the measurement noise covariance
is, faster the convergence will be. For the FCA system, an
EKF is preferred introducing non-linearity as per the study
of operating environment. The non-linear function can be
obtained by suitably modifying the non-linear function used
the EKF of GPS based ground vehicle tracking systems. Along
with EKF, adaptive filtering techniques like RLS algorithms
can be used to improve the tracking.

In a digital beamforming system, the entire process from
steering the beam, to identifying and tracking the target is done
in digital domain. So any signal processor or microprocessor
can be used to implement this system. However it is highly
recommended to use multi-core digital signal processors that
are specially designed for RADAR operations. The reason
is that most of the recommended algorithms involve highly
parallel mathematical operations which a multi-core DSP can
handle better. An alternative is to use an ASIC or FPGA based
system to implement the entire functionality. FPGA based
implementations of Levinson-Durbin algorithm and Kalman
filtering algorithm are found to be very efficient. Other than
those approaches explained in this paper, there are many
other types of beamformers and beamspace processors. The
determination of the best approach is highly determinant on
the environmental parameters. However the basic architecture
of the digital beamformer does not change heavily among
different methods.
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